Monday , August 19 2019
Home / Science and Technology / 10 scientific facts that we learned from the first pictures of a black hole

10 scientific facts that we learned from the first pictures of a black hole

10 научных фактов, которые мы извлекли из первой фотографии черной дыры

The idea of black holes dates back to 1783, when the Cambridge scholar John Michell realized that a sufficiently massive object in a sufficiently small space can attract even light, preventing him from escaping. Over a century later, Karl Schwarzschild found an exact solution for the General theory of relativity, which predicted the same result: a black hole. As Michelle and Schwarzschild predicted a clear link between the event horizon, or the radius of the area from which light can not escape, and the mass of the black hole.

10 научных фактов, которые мы извлекли из первой фотографии черной дыры

At a distance of 55 million light-years, the estimated mass of the black hole is 6.5 billion times the sun. Physically this corresponds to a size exceeding the size of the orbit of Pluto around the Sun. If the black hole were not, light would take about a day to pass through the diameter of the event horizon. And just because:

  • at the Telescope the event horizon enough resolution to see the black hole
  • the black hole strongly emits radio waves
  • very little radio wave radiation in the background to interfere with the signal

we were able to build this first picture. And now we have learned profound lessons ten.

We know what it looks like a black hole. What’s next?

10 научных фактов, которые мы извлекли из первой фотографии черной дыры

The gravitational dynamics of stars gives good estimates for the masses of black holes; observations of gas — no. To the first image of the black hole we had several different ways to measure the masses of black holes.

We could either use a measuring star — like orbits of individual stars near the black hole in our own galaxy, or absorption lines of stars in M87 — which gave us the gravitational mass, or of emissions from gas that is moving around the Central black hole.

Like our galaxy and M87, the two scores were very different: the gravity assessment was 50-90% more than gas. For M87 gas measurement showed that the black hole mass are 3.5 billion suns, and gravity measurements were closer to the 6.2 — 6.6 billion But the results of EHT revealed that the black hole is of 6.5 billion solar masses, and thus the gravitational dynamics — a great indicator of black hole mass, but the findings for gas are displaced toward lower values. This is a great opportunity to revise our assumptions about the astrophysical orbital gas.

See Also:  The South Koreans created a solid-state battery

?t=2

It should be a rotating black hole, and its axis of rotation points in the direction from the Earth. Through observation of the event horizon, the radio emission around it, the large-scale jet and extended radio emission measured by other observatories, EHT has determined that it is a black hole of Kerr (rotating) and not the Schwarzschild (non-rotating).

Not a single simple line of black holes that we could examine to determine this nature. Instead, we have to build models most of the black hole and the matter outside of it, and then to develop them, to understand what is happening. When you are looking for possible signals that may occur, you be able to restrict them so that they are consistent with your results. This black hole must rotate, and the rotation axis points from the Earth by about 17 degrees.

10 научных фактов, которые мы извлекли из первой фотографии черной дыры

The visible ring demonstrates the strength of gravitation and gravitational lensing around a Central black hole; General relativity and again tested. This ring is in the radio corresponds to the event horizon and does not correspond to a ring of rotating particles. And it’s also not the most stable circular orbit of a black hole. No, this ring arises from the gravitational sphere linterweb photons whose paths are bent by the gravity of a black hole on the way to our eyes.

This light is bent in a large field than would be expected if gravity was not that strong. Writes to Event Horizon Telescope Collaboration:

“We found that more than 50% of the total flow in arcsecond is near the horizon and that this radiation is dramatically suppressed when hit in this area, 10 times, which is a direct proof of the predicted shadow of the black hole”.

See Also:  Google and Huawei have promised to pay $400 for a broken Nexus 6P

The General theory of relativity once again proved correct.

10 научных фактов, которые мы извлекли из первой фотографии черной дыры

EHT in the future will reveal the physical origin of the flares of black holes. We saw in the x-ray and in the radio that a black hole at the center of our own milky Way emits a short flash of radiation. Although the first presents the image of a black hole showed a supermassive object in M87, the black hole in our galaxy — Sagittarius A* — there will be this great, the only change will be faster.

In comparison with the mass of M87 6.5 billion solar masses — the mass of Sagittarius A* is 4 million solar masses: 0.06% down from the first. This means that fluctuations will occur not in the course of the day, for even one minute. Features of the black hole will change quickly, and when outbreaks occur, we can discover its nature.

As outbreaks are associated with temperature and luminosity of radiocative that we saw? Does magnetic reconnection as the coronal mass ejection of our Sun? Something is broken in the accretion flows? Sagittarius a* flares up daily, so we can tie all the right signals with these events. If our models and observations will be as good as they were for M87, we will be able to determine what drives these events and maybe even find out what falling into a black hole, creating them.

10 научных фактов, которые мы извлекли из первой фотографии черной дыры

The improvement of the Event Horizon Telescope will show the presence of other black holes near galactic centers. When a planet revolves around the Sun, it is connected not only with the fact that the Sun has a gravitational effect on the planet. There is always an equal and opposite reaction: the planet affects the sun. Similarly, when the object is circling around the black hole, it also has the gravitational pressure of a black hole. In the presence of a set of mass near the centers of galaxies — and, in theory, many of the invisible yet black holes Central black hole should be literally shaking in your seat, being pulled apart by Brownian motion of surrounding bodies.

See Also:  Created a material with magnetic shape memory

The complexity of carrying out this measurement today is that you need a reference point to calibrate your position relative to the location of the black hole. The technique for such measurement implies that you are looking at a calibrator, then to the source, back to the calibrator back to the source, and so on. To move the view very quickly. Unfortunately, the atmosphere is changing very rapidly, and in 1 second a lot can change, so you simply will not have time to compare two objects. In any case, not with modern technology.

But technology in this area are developing extremely fast. The instruments used in EHT, expect updates and may be able to achieve the necessary speed to the mid 2020-ies. This puzzle can be resolved by the end of the next decade, thanks to improved instrumentation.

10 научных фактов, которые мы извлекли из первой фотографии черной дыры

Making the necessary improvements, instead of 2-3 galaxies we will be able to find hundreds of black holes or even more. The future of photo albums with black holes seems bright.

The project of Telescope event horizon was expensive, but it paid off. Today we live in an era of astronomy black holes and finally able to observe them firsthand. This is only the beginning. Subscribe to our channel in the Telegram to get all the news from this invisible front.

Check Also

Killer dinosaurs from outer space

To the question — can more or less large asteroids to collide with Earth? astronomers …

Leave a Reply

Your email address will not be published. Required fields are marked *